What is the definition of a composite number?

Prepare for the WEST–B Mathematics Test. Engage with multiple choice questions and explanations to boost understanding. Set yourself up for success!

A composite number is defined as a positive integer that has at least one positive divisor other than one or itself. This means that a composite number can be divided evenly by other numbers in addition to 1 and the number itself. For instance, the number 6 is composite because it can be divided evenly by 1, 2, 3, and 6. The presence of additional divisors is what distinguishes composite numbers from prime numbers, which are defined as having exactly two distinct positive divisors: 1 and the number itself.

In contrast, numbers like 2, 3, 5, and 7 are prime numbers, as they cannot be divided evenly by any other positive integers except for 1 and themselves. The characteristics of composite numbers allow for division by at least one additional positive integer, firmly placing them within the classification of integers greater than 1 that can be formed through multiplication of smaller integers. This definition helps in understanding the categorization of numbers within number theory and their relationships regarding divisibility.

Subscribe

Get the latest from Examzify

You can unsubscribe at any time. Read our privacy policy